UniProt ID | MK14_HUMAN | |
---|---|---|
UniProt AC | Q16539 | |
Protein Name | Mitogen-activated protein kinase 14 | |
Gene Name | MAPK14 | |
Organism | Homo sapiens (Human). | |
Sequence Length | 360 | |
Subcellular Localization | Cytoplasm . Nucleus . | |
Protein Description | Serine/threonine kinase which acts as an essential component of the MAP kinase signal transduction pathway. MAPK14 is one of the four p38 MAPKs which play an important role in the cascades of cellular responses evoked by extracellular stimuli such as proinflammatory cytokines or physical stress leading to direct activation of transcription factors. Accordingly, p38 MAPKs phosphorylate a broad range of proteins and it has been estimated that they may have approximately 200 to 300 substrates each. Some of the targets are downstream kinases which are activated through phosphorylation and further phosphorylate additional targets. RPS6KA5/MSK1 and RPS6KA4/MSK2 can directly phosphorylate and activate transcription factors such as CREB1, ATF1, the NF-kappa-B isoform RELA/NFKB3, STAT1 and STAT3, but can also phosphorylate histone H3 and the nucleosomal protein HMGN1. RPS6KA5/MSK1 and RPS6KA4/MSK2 play important roles in the rapid induction of immediate-early genes in response to stress or mitogenic stimuli, either by inducing chromatin remodeling or by recruiting the transcription machinery. On the other hand, two other kinase targets, MAPKAPK2/MK2 and MAPKAPK3/MK3, participate in the control of gene expression mostly at the post-transcriptional level, by phosphorylating ZFP36 (tristetraprolin) and ELAVL1, and by regulating EEF2K, which is important for the elongation of mRNA during translation. MKNK1/MNK1 and MKNK2/MNK2, two other kinases activated by p38 MAPKs, regulate protein synthesis by phosphorylating the initiation factor EIF4E2. MAPK14 interacts also with casein kinase II, leading to its activation through autophosphorylation and further phosphorylation of TP53/p53. In the cytoplasm, the p38 MAPK pathway is an important regulator of protein turnover. For example, CFLAR is an inhibitor of TNF-induced apoptosis whose proteasome-mediated degradation is regulated by p38 MAPK phosphorylation. In a similar way, MAPK14 phosphorylates the ubiquitin ligase SIAH2, regulating its activity towards EGLN3. MAPK14 may also inhibit the lysosomal degradation pathway of autophagy by interfering with the intracellular trafficking of the transmembrane protein ATG9. Another function of MAPK14 is to regulate the endocytosis of membrane receptors by different mechanisms that impinge on the small GTPase RAB5A. In addition, clathrin-mediated EGFR internalization induced by inflammatory cytokines and UV irradiation depends on MAPK14-mediated phosphorylation of EGFR itself as well as of RAB5A effectors. Ectodomain shedding of transmembrane proteins is regulated by p38 MAPKs as well. In response to inflammatory stimuli, p38 MAPKs phosphorylate the membrane-associated metalloprotease ADAM17. Such phosphorylation is required for ADAM17-mediated ectodomain shedding of TGF-alpha family ligands, which results in the activation of EGFR signaling and cell proliferation. Another p38 MAPK substrate is FGFR1. FGFR1 can be translocated from the extracellular space into the cytosol and nucleus of target cells, and regulates processes such as rRNA synthesis and cell growth. FGFR1 translocation requires p38 MAPK activation. In the nucleus, many transcription factors are phosphorylated and activated by p38 MAPKs in response to different stimuli. Classical examples include ATF1, ATF2, ATF6, ELK1, PTPRH, DDIT3, TP53/p53 and MEF2C and MEF2A. The p38 MAPKs are emerging as important modulators of gene expression by regulating chromatin modifiers and remodelers. The promoters of several genes involved in the inflammatory response, such as IL6, IL8 and IL12B, display a p38 MAPK-dependent enrichment of histone H3 phosphorylation on 'Ser-10' (H3S10ph) in LPS-stimulated myeloid cells. This phosphorylation enhances the accessibility of the cryptic NF-kappa-B-binding sites marking promoters for increased NF-kappa-B recruitment. Phosphorylates CDC25B and CDC25C which is required for binding to 14-3-3 proteins and leads to initiation of a G2 delay after ultraviolet radiation. Phosphorylates TIAR following DNA damage, releasing TIAR from GADD45A mRNA and preventing mRNA degradation. The p38 MAPKs may also have kinase-independent roles, which are thought to be due to the binding to targets in the absence of phosphorylation. Protein O-Glc-N-acylation catalyzed by the OGT is regulated by MAPK14, and, although OGT does not seem to be phosphorylated by MAPK14, their interaction increases upon MAPK14 activation induced by glucose deprivation. This interaction may regulate OGT activity by recruiting it to specific targets such as neurofilament H, stimulating its O-Glc-N-acylation. Required in mid-fetal development for the growth of embryo-derived blood vessels in the labyrinth layer of the placenta. Also plays an essential role in developmental and stress-induced erythropoiesis, through regulation of EPO gene expression. Isoform MXI2 activation is stimulated by mitogens and oxidative stress and only poorly phosphorylates ELK1 and ATF2. Isoform EXIP may play a role in the early onset of apoptosis. Phosphorylates S100A9 at 'Thr-113'.; (Microbial infection) Activated by phosphorylation by M.tuberculosis EsxA in T-cells leading to inhibition of IFN-gamma production; phosphorylation is apparent within 15 minute and is inhibited by kinase-specific inhibitors SB203580 and siRNA. [PubMed: 21586573] | |
Protein Sequence | MSQERPTFYRQELNKTIWEVPERYQNLSPVGSGAYGSVCAAFDTKTGLRVAVKKLSRPFQSIIHAKRTYRELRLLKHMKHENVIGLLDVFTPARSLEEFNDVYLVTHLMGADLNNIVKCQKLTDDHVQFLIYQILRGLKYIHSADIIHRDLKPSNLAVNEDCELKILDFGLARHTDDEMTGYVATRWYRAPEIMLNWMHYNQTVDIWSVGCIMAELLTGRTLFPGTDHIDQLKLILRLVGTPGAELLKKISSESARNYIQSLTQMPKMNFANVFIGANPLAVDLLEKMLVLDSDKRITAAQALAHAYFAQYHDPDDEPVADPYDQSFESRDLLIDEWKSLTYDEVISFVPPPLDQEEMES | |
Overview of Protein Modification Sites with Functional and Structural Information | ||
* ASA = Accessible Surface Area
Locations | Modification | Substrate Peptides & Secondary Structure |
ASA (%) | Reference | Orthologous Protein Cluster |
---|---|---|---|---|---|
2 | Phosphorylation | ------MSQERPTFY ------CCCCCCCCC | 40.52 | 23401153 | |
2 | Acetylation | ------MSQERPTFY ------CCCCCCCCC | 40.52 | 20068231 | |
7 | Phosphorylation | -MSQERPTFYRQELN -CCCCCCCCCHHHHH | 39.25 | 23401153 | |
9 | Phosphorylation | SQERPTFYRQELNKT CCCCCCCCHHHHHHH | 17.54 | 18691976 | |
15 (in isoform 2) | Ubiquitination | - | 54.75 | 21890473 | |
15 | Ubiquitination | FYRQELNKTIWEVPE CCHHHHHHHHHHCHH | 54.75 | 21890473 | |
15 (in isoform 1) | Ubiquitination | - | 54.75 | 21890473 | |
15 (in isoform 3) | Ubiquitination | - | 54.75 | 21890473 | |
15 (in isoform 4) | Ubiquitination | - | 54.75 | 21890473 | |
15 | Ubiquitination | FYRQELNKTIWEVPE CCHHHHHHHHHHCHH | 54.75 | 21890473 | |
16 | Phosphorylation | YRQELNKTIWEVPER CHHHHHHHHHHCHHH | 30.19 | 17192257 | |
24 | Phosphorylation | IWEVPERYQNLSPVG HHHCHHHHCCCCCCC | 10.49 | 27251275 | |
28 | Phosphorylation | PERYQNLSPVGSGAY HHHHCCCCCCCCCCC | 25.70 | 25159151 | |
32 | Phosphorylation | QNLSPVGSGAYGSVC CCCCCCCCCCCCCCH | 22.08 | 28152594 | |
35 | Phosphorylation | SPVGSGAYGSVCAAF CCCCCCCCCCCHHEE | 17.29 | 27251275 | |
37 | Phosphorylation | VGSGAYGSVCAAFDT CCCCCCCCCHHEEEC | 11.01 | 27251275 | |
45 | Ubiquitination | VCAAFDTKTGLRVAV CHHEEECCCCHHHHH | 42.30 | - | |
53 | Acetylation | TGLRVAVKKLSRPFQ CCHHHHHHHCCCCHH | 37.95 | 21444723 | |
54 | Ubiquitination | GLRVAVKKLSRPFQS CHHHHHHHCCCCHHH | 45.13 | - | |
56 | Phosphorylation | RVAVKKLSRPFQSII HHHHHHCCCCHHHHH | 46.95 | - | |
61 | Phosphorylation | KLSRPFQSIIHAKRT HCCCCHHHHHHHHHH | 24.72 | 20873877 | |
66 | Ubiquitination | FQSIIHAKRTYRELR HHHHHHHHHHHHHHH | 30.98 | - | |
79 | Ubiquitination | LRLLKHMKHENVIGL HHHHHHCCCCCCHHH | 47.70 | - | |
79 | Sumoylation | LRLLKHMKHENVIGL HHHHHHCCCCCCHHH | 47.70 | - | |
79 | Sumoylation | LRLLKHMKHENVIGL HHHHHHCCCCCCHHH | 47.70 | - | |
118 | Ubiquitination | ADLNNIVKCQKLTDD CCCCCCCCCCCCCHH | 27.44 | - | |
121 | Ubiquitination | NNIVKCQKLTDDHVQ CCCCCCCCCCHHHHH | 63.93 | - | |
123 | Phosphorylation | IVKCQKLTDDHVQFL CCCCCCCCHHHHHHH | 46.55 | 17055984 | |
139 (in isoform 4) | Ubiquitination | - | 45.01 | 21890473 | |
139 | Ubiquitination | YQILRGLKYIHSADI HHHHHHCCHHHHHCE | 45.01 | 21890473 | |
139 | Ubiquitination | YQILRGLKYIHSADI HHHHHHCCHHHHHCE | 45.01 | 21890473 | |
139 (in isoform 1) | Ubiquitination | - | 45.01 | 21890473 | |
139 (in isoform 2) | Ubiquitination | - | 45.01 | 21890473 | |
139 (in isoform 3) | Ubiquitination | - | 45.01 | 21890473 | |
140 | Phosphorylation | QILRGLKYIHSADII HHHHHCCHHHHHCEE | 14.65 | 23312004 | |
143 | Phosphorylation | RGLKYIHSADIIHRD HHCCHHHHHCEECCC | 20.34 | 23312004 | |
152 | Acetylation | DIIHRDLKPSNLAVN CEECCCCCHHHCCCC | 51.17 | 21444723 | |
152 | Ubiquitination | DIIHRDLKPSNLAVN CEECCCCCHHHCCCC | 51.17 | 21444723 | |
162 | Glutathionylation | NLAVNEDCELKILDF HCCCCCCCEEEEEEE | 5.56 | 22555962 | |
165 | Ubiquitination | VNEDCELKILDFGLA CCCCCEEEEEEEEEC | 20.94 | - | |
175 | Phosphorylation | DFGLARHTDDEMTGY EEEECCCCCCCHHHH | 39.32 | 21945579 | |
179 | Sulfoxidation | ARHTDDEMTGYVATR CCCCCCCHHHHHHCC | 4.54 | 30846556 | |
180 | Phosphorylation | RHTDDEMTGYVATRW CCCCCCHHHHHHCCC | 24.26 | 19934253 | |
182 | Phosphorylation | TDDEMTGYVATRWYR CCCCHHHHHHCCCEE | 4.26 | 19934253 | |
185 | Phosphorylation | EMTGYVATRWYRAPE CHHHHHHCCCEECCH | 16.22 | 21945579 | |
221 | Phosphorylation | AELLTGRTLFPGTDH HHHHHCCCCCCCCCC | 33.81 | 22985185 | |
233 | Ubiquitination | TDHIDQLKLILRLVG CCCHHHHHHHHHHHC | 28.05 | - | |
233 | Acetylation | TDHIDQLKLILRLVG CCCHHHHHHHHHHHC | 28.05 | 25953088 | |
239 (in isoform 2) | Phosphorylation | - | 6.93 | 20068231 | |
241 | Phosphorylation | LILRLVGTPGAELLK HHHHHHCCCHHHHHH | 15.86 | 18691976 | |
241 (in isoform 2) | Phosphorylation | - | 15.86 | 17192257 | |
245 (in isoform 2) | Phosphorylation | - | 61.62 | 20068231 | |
248 (in isoform 1) | Ubiquitination | - | 61.76 | 21890473 | |
248 (in isoform 3) | Ubiquitination | - | 61.76 | 21890473 | |
248 | Ubiquitination | TPGAELLKKISSESA CCHHHHHHHHCCHHH | 61.76 | 21890473 | |
248 (in isoform 4) | Ubiquitination | - | 61.76 | 21890473 | |
248 | Ubiquitination | TPGAELLKKISSESA CCHHHHHHHHCCHHH | 61.76 | 21890473 | |
249 | Ubiquitination | PGAELLKKISSESAR CHHHHHHHHCCHHHH | 48.03 | - | |
252 (in isoform 2) | Phosphorylation | - | 38.76 | 20068231 | |
256 | Methylation | KISSESARNYIQSLT HHCCHHHHHHHHHHH | 45.85 | 115386679 | |
258 | Nitration | SSESARNYIQSLTQM CCHHHHHHHHHHHCC | 8.52 | - | |
258 (in isoform 2) | Phosphorylation | - | 8.52 | 20068231 | |
258 | Phosphorylation | SSESARNYIQSLTQM CCHHHHHHHHHHHCC | 8.52 | 27642862 | |
261 (in isoform 2) | Phosphorylation | - | 24.67 | 20068231 | |
263 (in isoform 2) | Phosphorylation | - | 28.24 | 20068231 | |
263 | Phosphorylation | RNYIQSLTQMPKMNF HHHHHHHHCCCCCCC | 28.24 | 17525332 | |
295 | Ubiquitination | MLVLDSDKRITAAQA HHCCCCCCCHHHHHH | 50.04 | - | |
298 | Phosphorylation | LDSDKRITAAQALAH CCCCCCHHHHHHHHH | 21.70 | 18691976 | |
323 | Phosphorylation | DEPVADPYDQSFESR CCCCCCCCCCCHHHH | 27.45 | 15284239 | |
326 | Phosphorylation | VADPYDQSFESRDLL CCCCCCCCHHHHCCH | 28.25 | 25159151 | |
338 | Sumoylation | DLLIDEWKSLTYDEV CCHHHHHHHCCHHHH | 33.27 | - |
Modified Location | Modified Residue | Modification | Type of Upstream Proteins | Gene Name of Upstream Proteins | UniProt AC of Upstream Proteins | Sources |
---|---|---|---|---|---|---|
123 | T | Phosphorylation | Kinase | GRK2 | P25098 | PSP |
180 | T | Phosphorylation | Kinase | MAP2K_GROUP | - | PhosphoELM |
180 | T | Phosphorylation | Kinase | MAP2K-FAMILY | - | GPS |
180 | T | Phosphorylation | Kinase | MAP3K5 | Q99683 | GPS |
180 | T | Phosphorylation | Kinase | MAP3K6 | O95382 | GPS |
180 | T | Phosphorylation | Kinase | MAPK14 | Q16539 | GPS |
180 | T | Phosphorylation | Kinase | MKK3 | P46734 | PSP |
180 | T | Phosphorylation | Kinase | MKK4 | P45985 | PSP |
180 | T | Phosphorylation | Kinase | MP2K6 | P52564 | PhosphoELM |
182 | Y | Phosphorylation | Kinase | MKK3 | P46734 | PSP |
182 | Y | Phosphorylation | Kinase | MAP2K_GROUP | - | PhosphoELM |
182 | Y | Phosphorylation | Kinase | MAP2K-FAMILY | - | GPS |
182 | Y | Phosphorylation | Kinase | RET | P07949 | PSP |
182 | Y | Phosphorylation | Kinase | MKK6 | P52564 | PSP |
182 | Y | Phosphorylation | Kinase | MKK4 | P45985 | PSP |
182 | Y | Phosphorylation | Kinase | MAPK14 | Q16539 | GPS |
182 | Y | Phosphorylation | Kinase | MAP3K6 | O95382 | GPS |
182 | Y | Phosphorylation | Kinase | MAP3K5 | Q99683 | GPS |
323 | Y | Phosphorylation | Kinase | ZAP70 | P43403 | Uniprot |
323 | Y | Phosphorylation | Kinase | LCK | P06239 | PSP |
323 | Y | Phosphorylation | Kinase | FYN | P06241 | PSP |
* Distance = the distance between SAP position and PTM sites.
Modified Location | Modification | Variant Position (Distance <= 10) |
Residue Change | SAP | Related Disease | Reference |
---|---|---|---|---|---|---|
Oops, there are no SNP-PTM records of MK14_HUMAN !! |
Kegg Disease | ||||||
---|---|---|---|---|---|---|
There are no disease associations of PTM sites. | ||||||
OMIM Disease | ||||||
There are no disease associations of PTM sites. | ||||||
Kegg Drug | ||||||
There are no disease associations of PTM sites. | ||||||
DrugBank | ||||||
There are no disease associations of PTM sites. |
loading...
Acetylation | |
Reference | PubMed |
"Acetylation of a conserved lysine residue in the ATP binding pocketof p38 augments its kinase activity during hypertrophy ofcardiomyocytes."; Pillai V.B., Sundaresan N.R., Samant S.A., Wolfgeher D., Trivedi C.M.,Gupta M.P.; Mol. Cell. Biol. 31:2349-2363(2011). Cited for: ACETYLATION AT LYS-53 AND LYS-152 BY KAT2B/PCAF AND EP300, ANDDEACETYLATION BY HDAC3. | |
Phosphorylation | |
Reference | PubMed |
"Large-scale proteomics analysis of the human kinome."; Oppermann F.S., Gnad F., Olsen J.V., Hornberger R., Greff Z., Keri G.,Mann M., Daub H.; Mol. Cell. Proteomics 8:1751-1764(2009). Cited for: PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-2; THR-180 AND TYR-182,AND MASS SPECTROMETRY. | |
"Kinase-selective enrichment enables quantitative phosphoproteomics ofthe kinome across the cell cycle."; Daub H., Olsen J.V., Bairlein M., Gnad F., Oppermann F.S., Korner R.,Greff Z., Keri G., Stemmann O., Mann M.; Mol. Cell 31:438-448(2008). Cited for: PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-2; THR-16; THR-180 ANDTYR-182, AND MASS SPECTROMETRY. | |
"Quantitative phosphoproteomic analysis of T cell receptor signalingreveals system-wide modulation of protein-protein interactions."; Mayya V., Lundgren D.H., Hwang S.-I., Rezaul K., Wu L., Eng J.K.,Rodionov V., Han D.K.; Sci. Signal. 2:RA46-RA46(2009). Cited for: PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT THR-180 AND TYR-182, ANDMASS SPECTROMETRY. | |
"A quantitative atlas of mitotic phosphorylation."; Dephoure N., Zhou C., Villen J., Beausoleil S.A., Bakalarski C.E.,Elledge S.J., Gygi S.P.; Proc. Natl. Acad. Sci. U.S.A. 105:10762-10767(2008). Cited for: PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT THR-180 AND TYR-182, ANDMASS SPECTROMETRY. | |
"ATM and ATR substrate analysis reveals extensive protein networksresponsive to DNA damage."; Matsuoka S., Ballif B.A., Smogorzewska A., McDonald E.R. III,Hurov K.E., Luo J., Bakalarski C.E., Zhao Z., Solimini N.,Lerenthal Y., Shiloh Y., Gygi S.P., Elledge S.J.; Science 316:1160-1166(2007). Cited for: PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT THR-263, AND MASSSPECTROMETRY. | |
"Proteomics analysis of protein kinases by target class-selectiveprefractionation and tandem mass spectrometry."; Wissing J., Jaensch L., Nimtz M., Dieterich G., Hornberger R.,Keri G., Wehland J., Daub H.; Mol. Cell. Proteomics 6:537-547(2007). Cited for: PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT THR-180 AND TYR-182, ANDMASS SPECTROMETRY. | |
"Global, in vivo, and site-specific phosphorylation dynamics insignaling networks."; Olsen J.V., Blagoev B., Gnad F., Macek B., Kumar C., Mortensen P.,Mann M.; Cell 127:635-648(2006). Cited for: PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT THR-180 AND TYR-182, ANDMASS SPECTROMETRY. | |
"Global phosphoproteome of HT-29 human colon adenocarcinoma cells."; Kim J.-E., Tannenbaum S.R., White F.M.; J. Proteome Res. 4:1339-1346(2005). Cited for: PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT THR-180 AND TYR-182, ANDMASS SPECTROMETRY. | |
"Pro-inflammatory cytokines and environmental stress cause p38mitogen-activated protein kinase activation by dual phosphorylation ontyrosine and threonine."; Raingeaud J., Gupta S., Rogers J.S., Dickens M., Han J.,Ulevitch R.J., Davis R.J.; J. Biol. Chem. 270:7420-7426(1995). Cited for: PHOSPHORYLATION AT THR-180 AND TYR-182, ENZYME REGULATION, ANDSUBCELLULAR LOCATION. | |
"An extensive survey of tyrosine phosphorylation revealing new sitesin human mammary epithelial cells."; Heibeck T.H., Ding S.-J., Opresko L.K., Zhao R., Schepmoes A.A.,Yang F., Tolmachev A.V., Monroe M.E., Camp D.G. II, Smith R.D.,Wiley H.S., Qian W.-J.; J. Proteome Res. 8:3852-3861(2009). Cited for: PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT TYR-182, AND MASSSPECTROMETRY. | |
"Phosphoproteome of resting human platelets."; Zahedi R.P., Lewandrowski U., Wiesner J., Wortelkamp S., Moebius J.,Schuetz C., Walter U., Gambaryan S., Sickmann A.; J. Proteome Res. 7:526-534(2008). Cited for: PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT TYR-182, AND MASSSPECTROMETRY. | |
"Multiple reaction monitoring for robust quantitative proteomicanalysis of cellular signaling networks."; Wolf-Yadlin A., Hautaniemi S., Lauffenburger D.A., White F.M.; Proc. Natl. Acad. Sci. U.S.A. 104:5860-5865(2007). Cited for: PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT TYR-182, AND MASSSPECTROMETRY. | |
"Global survey of phosphotyrosine signaling identifies oncogenickinases in lung cancer."; Rikova K., Guo A., Zeng Q., Possemato A., Yu J., Haack H., Nardone J.,Lee K., Reeves C., Li Y., Hu Y., Tan Z., Stokes M., Sullivan L.,Mitchell J., Wetzel R., Macneill J., Ren J.M., Yuan J.,Bakalarski C.E., Villen J., Kornhauser J.M., Smith B., Li D., Zhou X.,Gygi S.P., Gu T.-L., Polakiewicz R.D., Rush J., Comb M.J.; Cell 131:1190-1203(2007). Cited for: PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT TYR-182, AND MASSSPECTROMETRY. | |
"Alternative p38 activation pathway mediated by T cell receptor-proximal tyrosine kinases."; Salvador J.M., Mittelstadt P.R., Guszczynski T., Copeland T.D.,Yamaguchi H., Appella E., Fornace A.J. Jr., Ashwell J.D.; Nat. Immunol. 6:390-395(2005). Cited for: PHOSPHORYLATION AT TYR-323, AND ENZYME REGULATION. | |
"Immunoaffinity profiling of tyrosine phosphorylation in cancercells."; Rush J., Moritz A., Lee K.A., Guo A., Goss V.L., Spek E.J., Zhang H.,Zha X.-M., Polakiewicz R.D., Comb M.J.; Nat. Biotechnol. 23:94-101(2005). Cited for: PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT TYR-182, AND MASSSPECTROMETRY. |