CLOCK_HUMAN - dbPTM
CLOCK_HUMAN - PTM Information in dbPTM
Basic Information of Protein
UniProt ID CLOCK_HUMAN
UniProt AC O15516
Protein Name Circadian locomoter output cycles protein kaput
Gene Name CLOCK
Organism Homo sapiens (Human).
Sequence Length 846
Subcellular Localization Nucleus . Cytoplasm . Cytoplasm, cytosol . Shuffling between the cytoplasm and the nucleus is under circadian regulation and is ARNTL/BMAL1-dependent. Phosphorylated form located in the nucleus while the nonphosphorylated form found only in the cytop
Protein Description Transcriptional activator which forms a core component of the circadian clock. The circadian clock, an internal time-keeping system, regulates various physiological processes through the generation of approximately 24 hour circadian rhythms in gene expression, which are translated into rhythms in metabolism and behavior. It is derived from the Latin roots 'circa' (about) and 'diem' (day) and acts as an important regulator of a wide array of physiological functions including metabolism, sleep, body temperature, blood pressure, endocrine, immune, cardiovascular, and renal function. Consists of two major components: the central clock, residing in the suprachiasmatic nucleus (SCN) of the brain, and the peripheral clocks that are present in nearly every tissue and organ system. Both the central and peripheral clocks can be reset by environmental cues, also known as Zeitgebers (German for 'timegivers'). The predominant Zeitgeber for the central clock is light, which is sensed by retina and signals directly to the SCN. The central clock entrains the peripheral clocks through neuronal and hormonal signals, body temperature and feeding-related cues, aligning all clocks with the external light/dark cycle. Circadian rhythms allow an organism to achieve temporal homeostasis with its environment at the molecular level by regulating gene expression to create a peak of protein expression once every 24 hours to control when a particular physiological process is most active with respect to the solar day. Transcription and translation of core clock components (CLOCK, NPAS2, ARNTL/BMAL1, ARNTL2/BMAL2, PER1, PER2, PER3, CRY1 and CRY2) plays a critical role in rhythm generation, whereas delays imposed by post-translational modifications (PTMs) are important for determining the period (tau) of the rhythms (tau refers to the period of a rhythm and is the length, in time, of one complete cycle). A diurnal rhythm is synchronized with the day/night cycle, while the ultradian and infradian rhythms have a period shorter and longer than 24 hours, respectively. Disruptions in the circadian rhythms contribute to the pathology of cardiovascular diseases, cancer, metabolic syndromes and aging. A transcription/translation feedback loop (TTFL) forms the core of the molecular circadian clock mechanism. Transcription factors, CLOCK or NPAS2 and ARNTL/BMAL1 or ARNTL2/BMAL2, form the positive limb of the feedback loop, act in the form of a heterodimer and activate the transcription of core clock genes and clock-controlled genes (involved in key metabolic processes), harboring E-box elements (5'-CACGTG-3') within their promoters. The core clock genes: PER1/2/3 and CRY1/2 which are transcriptional repressors form the negative limb of the feedback loop and interact with the CLOCK|NPAS2-ARNTL/BMAL1|ARNTL2/BMAL2 heterodimer inhibiting its activity and thereby negatively regulating their own expression. This heterodimer also activates nuclear receptors NR1D1/2 and RORA/B/G, which form a second feedback loop and which activate and repress ARNTL/BMAL1 transcription, respectively. Regulates the circadian expression of ICAM1, VCAM1, CCL2, THPO and MPL and also acts as an enhancer of the transactivation potential of NF-kappaB. Plays an important role in the homeostatic regulation of sleep. The CLOCK-ARNTL/BMAL1 heterodimer regulates the circadian expression of SERPINE1/PAI1, VWF, B3, CCRN4L/NOC, NAMPT, DBP, MYOD1, PPARGC1A, PPARGC1B, SIRT1, GYS2, F7, NGFR, GNRHR, BHLHE40/DEC1, ATF4, MTA1, KLF10 and also genes implicated in glucose and lipid metabolism. Promotes rhythmic chromatin opening, regulating the DNA accessibility of other transcription factors. The CLOCK-ARNTL2/BMAL2 heterodimer activates the transcription of SERPINE1/PAI1 and BHLHE40/DEC1. The preferred binding motif for the CLOCK-ARNTL/BMAL1 heterodimer is 5'-CACGTGA-3', which contains a flanking Ala residue in addition to the canonical 6-nucleotide E-box sequence. [PubMed: 23229515 CLOCK specifically binds to the half-site 5'-CAC-3', while ARNTL binds to the half-site 5'-GTGA-3']
Protein Sequence MLFTVSCSKMSSIVDRDDSSIFDGLVEEDDKDKAKRVSRNKSEKKRRDQFNVLIKELGSMLPGNARKMDKSTVLQKSIDFLRKHKEITAQSDASEIRQDWKPTFLSNEEFTQLMLEALDGFFLAIMTDGSIIYVSESVTSLLEHLPSDLVDQSIFNFIPEGEHSEVYKILSTHLLESDSLTPEYLKSKNQLEFCCHMLRGTIDPKEPSTYEYVKFIGNFKSLNSVSSSAHNGFEGTIQRTHRPSYEDRVCFVATVRLATPQFIKEMCTVEEPNEEFTSRHSLEWKFLFLDHRAPPIIGYLPFEVLGTSGYDYYHVDDLENLAKCHEHLMQYGKGKSCYYRFLTKGQQWIWLQTHYYITYHQWNSRPEFIVCTHTVVSYAEVRAERRRELGIEESLPETAADKSQDSGSDNRINTVSLKEALERFDHSPTPSASSRSSRKSSHTAVSDPSSTPTKIPTDTSTPPRQHLPAHEKMVQRRSSFSSQSINSQSVGSSLTQPVMSQATNLPIPQGMSQFQFSAQLGAMQHLKDQLEQRTRMIEANIHRQQEELRKIQEQLQMVHGQGLQMFLQQSNPGLNFGSVQLSSGNSSNIQQLAPINMQGQVVPTNQIQSGMNTGHIGTTQHMIQQQTLQSTSTQSQQNVLSGHSQQTSLPSQTQSTLTAPLYNTMVISQPAAGSMVQIPSSMPQNSTQSAAVTTFTQDRQIRFSQGQQLVTKLVTAPVACGAVMVPSTMLMGQVVTAYPTFATQQQQSQTLSVTQQQQQQSSQEQQLTSVQQPSQAQLTQPPQQFLQTSRLLHGNPSTQLILSAAFPLQQSTFPQSHHQQHQSQQQQQLSRHRTDSLPDPSKVQPQ
Overview of Protein Modification Sites with Functional and Structural Information
Experimental Post-Translational Modification Sites

* ASA = Accessible Surface Area

Locations Modification Substrate Peptides
&
Secondary Structure
ASA (%) Reference Orthologous
Protein Cluster
8PhosphorylationMLFTVSCSKMSSIVD
CCEEEECCHHHHCCC
24.7230631047
19PhosphorylationSIVDRDDSSIFDGLV
HCCCCCCCCCCCCCC
29.6227732954
20PhosphorylationIVDRDDSSIFDGLVE
CCCCCCCCCCCCCCC
33.9827732954
31AcetylationGLVEEDDKDKAKRVS
CCCCCCCHHHHHHHH
73.7320167786
38PhosphorylationKDKAKRVSRNKSEKK
HHHHHHHHCCHHHHH
33.88-
41AcetylationAKRVSRNKSEKKRRD
HHHHHCCHHHHHHHH
59.9020167786
42PhosphorylationKRVSRNKSEKKRRDQ
HHHHCCHHHHHHHHH
59.19-
59PhosphorylationVLIKELGSMLPGNAR
HHHHHHHHCCCCCHH
29.75-
67SumoylationMLPGNARKMDKSTVL
CCCCCHHCCCHHHHH
49.38-
67SumoylationMLPGNARKMDKSTVL
CCCCCHHCCCHHHHH
49.38-
76UbiquitinationDKSTVLQKSIDFLRK
CHHHHHHHHHHHHHH
45.26-
85UbiquitinationIDFLRKHKEITAQSD
HHHHHHCHHHHCCCC
54.5721906983
88PhosphorylationLRKHKEITAQSDASE
HHHCHHHHCCCCHHH
21.5325954137
164PhosphorylationFIPEGEHSEVYKILS
CCCCCCCHHHHHHHH
25.18-
177PhosphorylationLSTHLLESDSLTPEY
HHHHHHHCCCCCHHH
32.2527067055
179PhosphorylationTHLLESDSLTPEYLK
HHHHHCCCCCHHHHH
43.3427251275
186UbiquitinationSLTPEYLKSKNQLEF
CCCHHHHHCCCHHHH
59.4921906983
205UbiquitinationLRGTIDPKEPSTYEY
HCCCCCCCCCCHHHE
77.75-
331PhosphorylationCHEHLMQYGKGKSCY
HHHHHHHHCCCCCCE
13.5727273156
394PhosphorylationRELGIEESLPETAAD
HHCCCCCCCCCCCCC
36.1125072903
398PhosphorylationIEESLPETAADKSQD
CCCCCCCCCCCCCCC
25.8025072903
402UbiquitinationLPETAADKSQDSGSD
CCCCCCCCCCCCCCC
45.3421906983
403PhosphorylationPETAADKSQDSGSDN
CCCCCCCCCCCCCCC
39.5023663014
406PhosphorylationAADKSQDSGSDNRIN
CCCCCCCCCCCCCCC
32.3430266825
408PhosphorylationDKSQDSGSDNRINTV
CCCCCCCCCCCCCEE
35.3523663014
414PhosphorylationGSDNRINTVSLKEAL
CCCCCCCEECHHHHH
14.7525072903
416PhosphorylationDNRINTVSLKEALER
CCCCCEECHHHHHHH
31.5223090842
418UbiquitinationRINTVSLKEALERFD
CCCEECHHHHHHHCC
33.172190698
427PhosphorylationALERFDHSPTPSASS
HHHHCCCCCCCCCCC
32.1130266825
429PhosphorylationERFDHSPTPSASSRS
HHCCCCCCCCCCCCC
32.6530266825
431PhosphorylationFDHSPTPSASSRSSR
CCCCCCCCCCCCCCC
43.1730266825
433PhosphorylationHSPTPSASSRSSRKS
CCCCCCCCCCCCCCC
30.5323403867
434PhosphorylationSPTPSASSRSSRKSS
CCCCCCCCCCCCCCC
35.5823403867
437PhosphorylationPSASSRSSRKSSHTA
CCCCCCCCCCCCCCC
42.4922817900
440PhosphorylationSSRSSRKSSHTAVSD
CCCCCCCCCCCCCCC
26.6628985074
441PhosphorylationSRSSRKSSHTAVSDP
CCCCCCCCCCCCCCC
28.0825849741
443PhosphorylationSSRKSSHTAVSDPSS
CCCCCCCCCCCCCCC
30.6023927012
446PhosphorylationKSSHTAVSDPSSTPT
CCCCCCCCCCCCCCC
41.1425849741
449PhosphorylationHTAVSDPSSTPTKIP
CCCCCCCCCCCCCCC
52.4125159151
450PhosphorylationTAVSDPSSTPTKIPT
CCCCCCCCCCCCCCC
43.7423927012
451PhosphorylationAVSDPSSTPTKIPTD
CCCCCCCCCCCCCCC
39.0423927012
453PhosphorylationSDPSSTPTKIPTDTS
CCCCCCCCCCCCCCC
41.5123090842
457PhosphorylationSTPTKIPTDTSTPPR
CCCCCCCCCCCCCCH
56.2230266825
459PhosphorylationPTKIPTDTSTPPRQH
CCCCCCCCCCCCHHC
36.6630266825
460PhosphorylationTKIPTDTSTPPRQHL
CCCCCCCCCCCHHCC
41.5530266825
461PhosphorylationKIPTDTSTPPRQHLP
CCCCCCCCCCHHCCC
39.1330266825
702DimethylationFTQDRQIRFSQGQQL
CCCCCEEEECHHHHH
19.47-
702MethylationFTQDRQIRFSQGQQL
CCCCCEEEECHHHHH
19.47-
704PhosphorylationQDRQIRFSQGQQLVT
CCCEEEECHHHHHHH
24.4528555341
711O-linked_GlycosylationSQGQQLVTKLVTAPV
CHHHHHHHHHHHCCC
27.5323395176
836PhosphorylationLSRHRTDSLPDPSKV
HHHHCCCCCCCHHHC
40.9826657352
842SumoylationDSLPDPSKVQPQ---
CCCCCHHHCCCC---
50.72-
842SumoylationDSLPDPSKVQPQ---
CCCCCHHHCCCC---
50.72-

Upstream regulatory proteins (kinases for phosphorylation sites, E3 ubiquitin ligases of ubiquitination sites, ...)
Modified Location Modified Residue Modification Type of Upstream Proteins Gene Name of Upstream Proteins UniProt AC of Upstream Proteins Sources
427SPhosphorylationKinaseGSK3BP49841
PSP
451TPhosphorylationKinaseCDK5Q00535
Uniprot
461TPhosphorylationKinaseCDK5Q00535
Uniprot

Functions of PTM Sites
Modified Location Modified Residue Modification Function Reference

Oops, there are no descriptions of PTM sites of CLOCK_HUMAN !!

Disease-associated PTM Sites based on SAP

* Distance = the distance between SAP position and PTM sites.

Modified Location Modification Variant Position
(Distance <= 10)
Residue Change SAP Related Disease Reference

Oops, there are no SNP-PTM records of CLOCK_HUMAN !!

Protein-Protein Interaction
Interacting Protein Gene Name Interaction Type PPI Reference Domain-Domain Interactions
BMAL1_HUMANARNTLphysical
14701734
BMAL2_HUMANARNTL2physical
14701734
BMAL1_HUMANARNTLphysical
11439184
RARA_HUMANRARAphysical
11439184
BMAL1_HUMANARNTLphysical
20551151
CRY1_HUMANCRY1physical
23555304
CRY2_HUMANCRY2physical
23555304
DEC1_HUMANDEC1physical
23555304
BHE41_HUMANBHLHE41physical
23555304
NPAS2_HUMANNPAS2physical
23555304
2A5D_HUMANPPP2R5Dphysical
23555304
2A5E_HUMANPPP2R5Ephysical
23555304
CSK2B_HUMANCSNK2Bphysical
23555304
2AAB_HUMANPPP2R1Bphysical
23555304
NR1D2_HUMANNR1D2physical
23555304
PER2_HUMANPER2physical
23555304
PP1A_HUMANPPP1CAphysical
23555304
PP1B_HUMANPPP1CBphysical
23555304
PP1G_HUMANPPP1CCphysical
23555304
KC1E_HUMANCSNK1Ephysical
23555304
DBP_HUMANDBPphysical
23555304
RORG_HUMANRORCphysical
23555304
BMAL1_HUMANARNTLphysical
26164627
PKN3_HUMANPKN3physical
27173435
VPS50_HUMANCCDC132physical
27173435
CAVN1_HUMANPTRFphysical
27173435
RPR1A_HUMANRPRD1Aphysical
27173435
RABX5_HUMANRABGEF1physical
27173435

Drug and Disease Associations
Kegg Disease
There are no disease associations of PTM sites.
OMIM Disease
There are no disease associations of PTM sites.
Kegg Drug
There are no disease associations of PTM sites.
DrugBank
There are no disease associations of PTM sites.
Regulatory Network of CLOCK_HUMAN

loading...

Related Literatures of Post-Translational Modification
Phosphorylation
ReferencePubMed
"An extensive survey of tyrosine phosphorylation revealing new sitesin human mammary epithelial cells.";
Heibeck T.H., Ding S.-J., Opresko L.K., Zhao R., Schepmoes A.A.,Yang F., Tolmachev A.V., Monroe M.E., Camp D.G. II, Smith R.D.,Wiley H.S., Qian W.-J.;
J. Proteome Res. 8:3852-3861(2009).
Cited for: PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT TYR-331, AND MASSSPECTROMETRY.

TOP